Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Acta Biomater ; 153: 411-418, 2022 11.
Article in English | MEDLINE | ID: covidwho-2041449

ABSTRACT

The emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mutants and breakthrough infections despite available coronavirus disease 2019 (COVID-19) vaccines calls for antiviral therapeutics. The application of soluble angiotensin converting enzyme 2 (ACE2) as a SARS-CoV-2 decoy that reduces cell bound ACE2-mediated virus entry is limited by a short plasma half-life. This work presents a recombinant human albumin ACE2 genetic fusion (rHA-ACE2) to increase the plasma half-life by an FcRn-driven cellular recycling mechanism, investigated using a wild type (WT) albumin sequence and sequence engineered with null FcRn binding (NB). Binding of rHA-ACE2 fusions to SARS-CoV-2 spike protein subdomain 1 (S1) was demonstrated (WT-ACE2 KD = 32.8 nM and NB-ACE2 KD = 31.7 nM) using Bio-Layer Interferometry and dose-dependent in vitro inhibition of host cell infection of pseudotyped viruses displaying surface SARS-CoV-2 spike (S) protein. FcRn-mediated in vitro recycling was translated to a five times greater plasma half-life of WT-ACE2 (t½ ß = 13.5 h) than soluble ACE2 (t½ ß = 2.8 h) in humanised FcRn/albumin double transgenic mice. The rHA-ACE2-based SARS-CoV-2 decoy system exhibiting FcRn-driven circulatory half-life extension introduced in this work offers the potential to expand and improve the anti-COVID-19 anti-viral drug armoury. STATEMENT OF SIGNIFICANCE: The COVID-19 pandemic has highlighted the need for rapid development of efficient antiviral therapeutics to combat SARS-CoV-2 and new mutants to lower morbidity and mortality in severe cases, and for people that are unable to receive a vaccine. Here we report a therapeutic albumin ACE2 fusion protein (rHA-ACE2), that can bind SARS-CoV-2 S protein decorated virus-like particles to inhibit viral infection, and exhibits extended in vivo half-life compared to ACE2 alone. Employing ACE2 as a binding decoy for the virus is expected to efficiently inhibit all SARS-CoV-2 mutants as they all rely on binding with endogenous ACE2 for viral cell entry and, therefore, rHA-ACE2 constitutes a versatile addition to the therapeutic arsenal for combatting COVID-19.


Subject(s)
Angiotensin-Converting Enzyme 2 , Antiviral Agents , COVID-19 Drug Treatment , Animals , Humans , Mice , Albumins/metabolism , Antiviral Agents/pharmacology , Pandemics , Protein Binding , SARS-CoV-2
2.
Int J Mol Sci ; 22(1)2020 Dec 24.
Article in English | MEDLINE | ID: covidwho-1041240

ABSTRACT

Thymosin α1 (Tα1) is an immunostimulatory peptide for the treatment of hepatitis B virus (HBV) and hepatitis C virus (HCV) infections and used as an immune enhancer, which also offers prospects in the context of COVID-19 infections and cancer. Manufacturing of this N-terminally acetylated 28-residue peptide is demanding, and its short plasma half-life limits in vivo efficacy and requires frequent dosing. Here, we combined the PASylation technology with enzymatic in situ N-acetylation by RimJ to produce a long-acting version of Tα1 in Escherichia coli at high yield. ESI-MS analysis of the purified fusion protein indicated the expected composition without any signs of proteolysis. SEC analysis revealed a 10-fold expanded hydrodynamic volume resulting from the fusion with a conformationally disordered Pro/Ala/Ser (PAS) polypeptide of 600 residues. This size effect led to a plasma half-life in rats extended by more than a factor 8 compared to the original synthetic peptide due to retarded kidney filtration. Our study provides the basis for therapeutic development of a next generation thymosin α1 with prolonged circulation. Generally, the strategy of producing an N-terminally protected PASylated peptide solves three major problems of peptide drugs: (i) instability in the expression host, (ii) rapid degradation by serum exopeptidases, and (iii) low bioactivity because of fast renal clearance.


Subject(s)
Adjuvants, Immunologic/pharmacokinetics , Thymalfasin/pharmacokinetics , Acetylation , Acetyltransferases/metabolism , Adjuvants, Immunologic/genetics , Adjuvants, Immunologic/pharmacology , Animals , Escherichia coli/metabolism , Escherichia coli Proteins/metabolism , Female , Half-Life , Mass Spectrometry , Microscopy, Electron, Scanning , Neoplasms/drug therapy , Peptides/chemistry , Proteolysis , Rats , Rats, Wistar , Recombinant Fusion Proteins/blood , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/pharmacokinetics , Recombinant Fusion Proteins/ultrastructure , Ribosomal Proteins/metabolism , Thymalfasin/blood , Thymalfasin/chemistry , Thymalfasin/genetics , Virus Diseases/drug therapy , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL